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DUALITY IN SEMI-INFINITE PROGRAMS

AND SOME WORKS OF HAAR AND CARATHEODORY

by

A. Charnes, W. W. Cooper and K. Kortanck*

Foreword

The following paper was stimulated by a paper of the Hungarian mathe-

matician, A. Haar (possibly one of the all-time great mathematicians).

Because it was published in a relatively obscure journal, it has only recently

been made generally available through the posthumous publication of his

collected works. Since the theorems to be established rest heavily on this

work, and Haar's paper is published in German, we present it for ease of

access in free translation in the appendix.

Introduction

Conjectured by vonNeumann arl proved by Gale, Kuhn and Tucker [1],

the dual theorem of linear prugramming has been unique among dual extremal

(or variational) principles (see, for example, K. Friedricha (2] for classical'

mathematical physics principles, and J. Dennis [ 31 and 17. S. Dorn [4] for

more recent use of Legendre transformations to establish dual "quadratic"

programming principles) applying to general systems of constraints involving

a finite number of variables in that neither principle contains the variables

associated with the other. The theorem has also been shown to be as funda-

mental for the theory of linear inequalities (see particularly Charnes and

Cooper [ 5] for this approach) as the classic Farkas-Minkowski lemma.

The research of A. Charnes and K. Kortanek at Northwestern University
has been supported by 0. N. .. contract Nonr-1228(10); that of W. W. Cooper
at C;arnegie Institute of Technology has been supported by 0. N. I. contract
Nonr-760(01). Reproduction in whole or in part is permitted for any purpose
of the United States Government.
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Generalizations to linear mappings between linear topological spaces

were forthcoming from S. Karlin and H. F. Bohnenblust [6] (also L. Hurwicz

[ 7]) for the Farkas-Minkowski lemma, and from D. Bratton (also recently

K. Kretschmer [ 8]) for the dual theorem in a brilliant, unpublished but well-

known paper [ 9]. As expected, these generalizations are not nearly as

strong or precise as the original finite dimensional theorems.

The Farkas-Minkowski lemma has been extended in another direction

in finite dimensional spaces by the Kuhn-Tucker theorem [10] which gives

a necessary and sufficient condition for the existence of a minimum to a

convex differentiable function over a convex set defined by a finite number of

differentiable inequalities subject to certain additional differential- geometric

constraint qualifications. This extension is made in terms of an equivalent

saddle-point formulation involving additional Lagrangcan variables. In

general, however, these are no longer related to any dual problem.

Dual theorems for nonlinear functionals and constraints in finite

dimensional spaces have been established by 17. Fenchel [11] in terms of

contact transformations, but the related problems and domains of definition

are presented only in highly implicit forms. The most explicit result to date

involving non-linearity and with separation of the variables of the dual problems

has been achieved by E. Eisenberg [ 12] in the form of maximization of a con-

cave function homogeneous of the first degree subject to a finite system of

inequalities related to the convex homogeneous function to be minimized in

the dual problem. The triple is subject to additional qualifications and

somewhat implicitly defined dual constraint sets.

Starting from a little-knovn v, rk of A. Haar [13]. we define a notion

of dual "Haar" (or "scmi-infinitec") programs which associate minimization

of a linear function of finitely many variables over a convex set defined by an

infinite (arbitrary cardinal) system of linear inequalities with maximization

of a linear function of infinitely many variables subject to a finite system of

linear inequalities. We introduce the notion of "general finite sequence"

space for the latter problem and establish that Charnes theorem (associating

linear independence and extreme points) [5] continues to hold and that the
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Opposite Sign Property of Charncs and Cooper [14] characterizes, algebrai-

cally, convex solution sets spanned by extreme points. (Note: These sets

need no longer be bounded.)

Ve study further, applying the notions of "regularization" to these

systcma, the straightforward duality relations between these programs,

obtaining (1) an extended dual theorem precisely paralleling that of the finite

system case, (Z) a general dual theorem for the most general case of (finite)

conven: programs by exprfssing them in our (infinite) form, and (3) the study
of any (real) semi-infinite program is reduced to that of a "Haar" program.

It should be further noted that our dual structure appears to be particu-
larly adapted to probing the borderline between properties which are purely

algebraic and those which require topology. Also it appears to offer new

possibilities for numerical analysis and effective solution of problems of

optimization over convex sets with an infinite number of extreme points since

it substitutes direct algebraic maniulation and minimal topology for

differential- geometric rcquirer.icnts or qualifications.

Generalized Finite Sequence Spaccs as Solutions Spaces

By a generalized finite sequence space. S. with rcspect to an index

set I, we mean the vector space of alU(?os:iibly infinite) vect'rsk: i i I] over

an ordered field F with only finitely many non-zero entries. Let V be a

vector space over F and consider a collection of vectors: Po, {P.:i aI1 in V.

We call the subspace R spanned by these vectors the "requirements space,

and we call S the "solutions space" because it is in S that the solution

set A appears, where

A = {XS: L X.P. = P , X.> 0
i I I 1 -

Clearly A is a convex set in S.
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Theorem 1 (Linear Independence by Association with Extreme Points)

X 0 is an extreme point of A in S if and only if the non-zero coordi-

nates of X correspond to coefficients of linearly independent vectors in R.

Procf: Assume that X is an extremle point of A , and let 3 = {i I: X. > 0}

Assume on the contrary that the set {1i: i e J) is linearly dependent. Then
I

there exist Pi for i t J, not all zero, such that

Eil . = 0•

ic j11

Define P f S by placing zeros in other coordinate positions. Since J is finite

and X. > 0 for all jcJ, there exists k> 0 such that X. + kpj, X. - kp, > 0
J 3 13 3

for all jeJ. Set %M= X - kP and X( 2 ) = X + kP . Then 0)i X( 2 ) since some

P 0 . M~oreover XG{ ) I( 2 )E A and X I 4 1 +! I%(-) implies X is not an

extreme point, which is a contradiction. Hence the set {R :j eJ} is linearly

independent.

On the other hand if X c A is such that the set P. j cJ) is linearly

independent. then X is an extreme point. For if it wyere not we could write X

as a convex combination of two distinct points of A,

X = 1jX( 1)+ (I- ji))(2) with X (X).

Now M 0)P. = 2: )P. -I = X. P. = P ; but the non-zero coordinate positionsiI 1 1 WI 1 iCI I1 0

(1)of X) appear among those of X. and therefore the only P. vectors with non-aero
I

coefficients in M )) P. are among [1. : j}, a linearly independent set whichcoffcint in whi
i61 J

means that the expression for P is unique. Therefore = . for all j J
j j
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and therefore X(I = X, Similarly X!Z)= X ; This is a contradiction and we

conclude that X is an extreme point.

Definition: A set K in S is bounded if there exists M e F such that for any

Xc K, Xi. <l for all i I (or alternatively, if Z Ik.I < 1K all X K).
iCP I

Thus if X, acA, the ray K=( + ta: Ii.? 0) is not a bounded set.

Theorem 2 (Opposite Sign Theorem) I

A is generated by its extreme points if and only if for any a e S. a 1 0,

E a.P. = 0 implies some a and some a are of opposite signs.
iW I r 8

Proof: Suppose that A is generated by its extreme points, and that there exists

a 0, a > 0 such that a. i. 0. Wie will show a contradiction. For any
icl 1 1

_> 0 , X + ia c A and therefore is a convex combination of extreme points

of A. The only possible extreme points that could occur in such an expression

are those with non-zero coordinate positions among those of X + lia for all

jI > 0. For every such positionirg of non-zero entries there corresponds

at most one cxtr me point; otherwise we could express P in two different
0

ways with respect to the same linearly independent set. Now if, say, X + Ita

n
has N non-zero entries, then there are at most . N such extreme

m=1 m

points, i.e., finite in number. But we saw above that X + ILa , for all li_ 0

is in the convex hull of these extreme points, which is impossible since the

convex hull of a finite number of points is bounded. Hence there exists no

such a 4 S as above, and the opposite sign property must hold.
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Suppose now that the opposite sign property holds. Given X c A, we

must show that it is a convex combination of a finite number of extreme

points in A. Suppose X has N non-zero coordinates and is not an extreme

point. Vie will show that X is a strictly convex combination of XI)I X (2) A,

each of which has at least one fewer positive component than X . The same

construction can be applied to ( I and %(Z) and so on, until an extreme point

is encountered. This is a finite process because we will at most encounter

2 N - points with only one non-zero coordinate, each of which is extreme

because its associated vector is surely linearly independent. Thus after all

extreme points necessary to stop the process are met, we can reverse the

steps to express the original X as a convex combination of these.

It suffices to carry out the first construction. Thus E X. P. = P
jEJ" 

3 3  0

and ' a. P. = 0, since the P.'s are linearly dependent. Therefore by the
jeJ 3 J  J

opposite sign assumption some ar > 0 and some as < 0.

X. X.
Let p1 = rmin - and p2 = min -- L, so that p1  > 0.

a >0 aj a.<0 I a jIPII2
J 3

Set X( .) = X- p, c for jcJ and 0 in other components. Similarly

X( 2 ) = .+2. Then X(1) and %(2)aA and

P (1) P1  (2)
Pl+ +2 Pl+P -

Now the above minimums will be assumed for some jjf J, and therefore

X(1)and X(2) have at least one more zero than does X.

Q.E.D.

The following example shows that A although generated by its extreme points

need no longer be bounded.
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Example: A E { 2 Xk= 1 , X 0 evidently has the

oppuoito sign properlty and Lherefore is _panned by its c:.treme points.

Since the extreme points are of the form X(k)= (0,..., 0, Z1 ,0,...), where

2k occurs in the kt h position, A is unbounded.

The Extended Dual Theorem

"%*e call the following pair of problems formed from the same data

"dual semi-infinite" programs.

I II

min Tp max c. X.

subject to Tp. k c. subject to P. X. = PI- s iCI 1 1 0

XES, X> 0.

TWhen F is the real field, then u c R for some m . If in addition the
set M = W, c ): i a I } is a "canonically closed" set in ! m+l, wc call these

problems dual "Haar" programs. Dy "canonically closed" is meant that

Tin an equivalent inequality system (for minimization) in which the (PT , ci)

form a bounded set, this set is closed.

In most of his theorems on linear inequalities IIaar only includes

closure of M as a basic assumption. However, we can see readily (by

counter-examplc) that he really meant a little more than this, that is, that

the uet M bc canonically closed. I-aar's theorem on inhomogeneous in-

equalities is stated as follows.
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Theorem 3 (Haarts Theorem on Inhomogeneous Inequalities)

Let Dk(Ulf Uz ... Un) = a kUl+...+aknun+ akn+ for all kiI, with

(UZ 1u2 ,., )viewed as in Rn If D(uu 2 . n aIU+...+a u +a n+ 0

is a consequence of the canonically closed system Dk> 0 (kel), then there

exist Xk> 0, X> 0, with at most n+l non-zero such that

D(u 1, 9, ,Un) = Z XkDk(Ul' . u) + s "
k

The proof of this theorem along with other results of Haar appear in the

appendix.

Theorem 4 (Extended Dual Theorem)

For any pair of dual Haar programs precisely one of the following

occurs:

(i) sup E c. X. = 00 and I is inconsistent
iEI 1

(ii) inf uTp = 00 and II is inconsistent
0

(iii) I and II are both inconsistent

(iv) inf uT = sup E c i X Z c.X? for some X*c A.0 iel W iEI

Before we turn to the proof, let us consider some examples of the above

situations.

Examples: Letl = (1,..... }

I 11

(i) Min u Max 2 (-1 )k

subject to Zku _> (-)k k=l, Z,... subject to Z = I

k

O.u> 0 kk .



-9-

Clearly I is inconsistent. However, for II take k large and even to see that

X= (0,* 4., 0 , 2k, 0.,) is a feasible point which means that the maximum is

larger than 2 . Hence since k can be arbitrarily large Max = + 00 .

I II

(ii) M i u Max

subject to u(- 2 k) 2 - subject to Z1 (-2 "k) Xk= 1
keI

0 u _k 0 k 2 O

Clearly II is inconsistent, and feasible u consist of u <- 0, i. e., Min -00

(iii) I II

Min u Max Z)",k I

subject to u(-2 " } > I subject to Z(-Z k ) Xk= 1
k

0.u>0 X 

Both I and II arc inconsistent.

(iv) Consider as the constraint set thu points under the curve y--tan '(x),

with x > 0 and above the x-axis.
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Wie observe that the equation of the tangent line at the point (x, tan Ix)
-1

u - tan x 1
is given by 2- - and therefore our constraint set is given by

uI - x l+x2

the following system of inequalities

u1 (l+x2 ) I - u 2 > -tanzlx + x(l+x2) "I = cx

-U> -

2 2

Let the direct problem, I, be min (-u 2 ) subject to the above constraints.

In this example the set of coefficient points is

{ (1+x2 )_I , -1, -tarnlx + x(l+x 2 )-) : x> 0 } in addition to

the points (0,1,0) and (0, -1, - Z). Clearly this set is compact, since the limit
2

point (0, -1, --2) as x -. o is added. Note that min -u 2 = -maxu 2  - is
2 22

never attained because feasible points must lie on or under the curve.

For this example, the dual II is as follows.

If we let P = I ), P = 0 ), = thenwehave

max 'Sc X +0.% +(-)X
x x a

subjectto X 1 X p P X P all X'sk0.

We see that if X = I and all other Xts = 0 , then the maximum - Zris attained.
P 2

Lemma 1 If both I and II are consistent, then

TTinfUP 0 =sup Z uP.x . Zc X? for some X*e A.
i*I I I i 1
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Proof: We observe that

Tp = uTP. i- I c." Thus in UP > sup c\.X..
ifl 1 i t 0- *

Let z*=- iu P Then Jr z* whenever uP.-k c i
0 0 1 1

By Haarls inhomogeneous extension of the Farkas-M inkowski lemma

it follows that for all u., TP " z- (T - c) Cv*+ v* where v?, v 0
J id 1 1 0 10

and v*is inS.

Thus P P. v 0 V*eA0 i(I I I

and z*= E c.v.*- v*, or z*< c. v.
j'EI 1 1 01 1

T1
Hence Fc.v.'> z*= infuTP > sup 1 c. ,i I 1- 0--

so that Ec. v.= sup Zc. . = inf u •

Q.E.D.

This may be strengthened to

Theorem 5

The results of the lemma hold if { (-T, c.): i e I has the Farkas-

Milnkowski property, that is, if for any inequality D> 0 wvhich is a consequence

of the system Dk ? 0 , there cist Xkk  0, Xo - 0 oily finitely many non-

zero) such that D = M XkDk+ X. In the appendix it is shown that

k

canonically closed systems have the Farkas-N; inkowski property.

Proof of the Extended Dual Theorem

Adjoining artificial variables and bounding constraints to the given
I/

problems, we obtain the following regularized version.-

1/ Compare this formulation with the finite problem regularization given in
Mananrccn Modcls and Industrial Applications of Linear Programminf,
A. Charnes and V1. W. Cooper, pp. 189-190, Vol. I.
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TrnUsM+ uPo mai cti - Ue( +)

+uT i .? c i  subject to Xs+ M Xi  < Msubject to uo _u i>c

O -U P. X Im

T +PI~+
- iI mrnq

"uTi> ' U eT whereX Xi_?O,iEI, and . > 0

m m 0 J

u >0
0 -

Clearly I R is consistent, for take T= 0 and u0 _ sup {ci} since {ci: i lI}
+ -

is a compact set. As for IIR, take XO 0 (iel) and v - v P with ) o = M.

Note in addition that the system is still a Haar system becauso addition of a

finite number of coefficient points cannot destroy compactness of the coefficient

set. Hence we can apply the lenma to the regularized version to conclude that

T m+
inf {u o M + u P 0  c.* - U : V*, where V V.

i611i j=lJ .1J J

Further, the relevant set- u o, uT for I is non-empty and compact since it

is the intersection of closed sets (half-spaces) and by regularization is non-

empty and bounded. Thus by compactness the "inf" is actually assumed for

some u* u T . The following possibilities are therefore mutually exclusive
0 T +T _T

and collectively exhaustice for u0 and T= (v , V ). e tabulate them with

the correspondingly numbe.red conclusion of our theorem.

() u* 0, v*0; I no solution , sup Mci i  00

(ii) u*0 = 0, V*A 0, 1lno solution, inf T = 00

(iii) u* t 0, v* #0, neither I nor II has a solution
0

(iv) u*= 0 V*= 0 , both feasible and inf P = sup cX Z ciX
0 0 1

for some X* in A.

1/ only bounded u 0 are relevant.
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Although for some purposes it may be vital to deal with a semi-infinite

program as presented, for most cases the object of primary interest will be

the nature of the solutions to the system uTPi > c i , i t I. VWe have already

pointed out that any such system is equivalent to one in which the {Pi, ci} are

bounded (for each inequality can be separately divided through by the maximum

of the absolute value of its P1 . ci entries). With regularization the most

general case is brought under the foregoing by the observation that

Lemma: The canonical closure of a system of linear inequalities has the

same solution set as the original system.

T()T ()TProof: It suffices to show that if (T a) = lim (a n) ) and a(n) T  n -  ,
nnn1, ,... teaTu

T
T (n)T

Suppose one could have a u+ t =-6 < 0 witha +a>0 for alln.

(n)r

Butthen O< 6-[(aT-a(n)T)u+(-an) < for n>no(6).
n -n

T
This is a contradiction and therefore we conclude a u + o k 0 .

Q.E.D.

Thus by reducing them to equivalent Haar programs we have achieved a

duality theory for semi-infinite programs as complete as that in the finite

s ituation.

To obtain the general convex programming dual theorem, we move the

functional into the constraints and replace it with a linear function as follows.

Suppose the direct problem is: min C(u) subject to G(u) Z 0, where

GT = (..., Gi(u),...) is a finite vector of concave functions which defines

Tthe convex set 71 of the u t s. Let u P. 2 c i . 1l be a system of supports
a T

for W7, and z -uT> d , a tA be a system of supports for z - C(u) Z 0
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Then the direct problem may be rewritten as:

min z

Tsubject to z- u Qa> d

TuTP.> c i , aeA, itl. Thus we have

Theorem 5

Assuming the Farkas-M;ilkovski property for this system, the extended

dual theorem applies to the following dual programs:

min z max M d I. + EcX
a i

Tsubject to z - u Q >d subjectto 

up > C. -% + Z P. X. 0.

*ki > 0

Since the work of A. Haar utilized above is not available in English,

we have prepared a free translation of it which is contained in the following

appendix, together with, first, a rendition of the pertinent remarks and

theorem of Caratheodory's which Haar refers to and employs.



APPZNDEK

A. PRELDMINA1RY RZMARKS BkASED ON CARATHZORORY'S (1911) PAPZR

In addition to the notion of convexity, Caratheodoryls convex sets, X.

are closed. He discusses outer points and boundary points of a convex set,

agreeing with the usual intuitive meaning. A boundiag-hyperplane. h. *is a

hyperplane which does not meet K. and does not separate points of. i Le..

there cant be points in K for which h > 0 and points for which h < 0.* This

concept is extended to cases where K is a closed and bounded set. L e.,

K iscma

Now given any compact set M C Rn # the space of n-tuples of real

nubers, let K be the collection of all points through which no bounding-

hyperplane can be drawn for M4.

Lezma: K is the smallest convex set containing Md.

Proof: K is bounded, for let A a maximnum distance of Md to the origin 0.

Then each plane whose distance from 0 is > A is a bounding-hyperplane

for M. and hence each point greater than Adistance from 0 is not in K.

K is closed: for let a be an accumulation point of K . If a i K. then we can

pass a bounding-hyperplame for M4 through a.* say. a, with distance p from

M. But this means we can pass bouning-hyperplanes thrugh points of

distance loe than p from a.* Hence a cannot be arbitrarily close to points

of K which is a contradiction. Heoce a s K.* and K in closed in Riy

Nowf a b.K,,a~iband c sanypohdn ;Li then ctK. For

it not, pass a boundlng-hyperplane a for Md through c # then a and b are

not on as. and therefore ie on different sides of a. But depending on which

side of a Md is on we can sh~it a either through a or b to got a now
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bounding-hyperplane for M. This is impossible since a, be K, Hence c a K,

and K is convex.

If L is any convex net containing M and p A L, then we can pass a

bounding-hyporplane, s, for L through p. But m is also a bounding-

hyperplane for M and therefore p 1 K by definition. Hence K C L, and K

if the smallest convex set containing M.

Main Theorem: Lot M and K be am above. For any c a K, there exist a

finite mnber of points of m, P and masses mI with ml _2 0 and

n n
Z nl such that c= m p1i-1 i-n m p

Proof: Dimension M ul: let a and b be the extreme points of M. Then

every point of X is of the form c ata+(I-t)b. 0St.5 1.

M S
a b

Assume that the statement is true for (n-l)-dimensional space (or equivalently

for (n-l)-dimensional subspaces in Rl.n).

Let K and M be in R.. Given c 4 K, lot m, be any point in M, and

form r- and. b the intersection with the boundary of K. If c is interior

LL Lie
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to K, then we can find b 0 m. Now pass a "supporting-plans.," m, through b

having properties (1) b 4 S ; (2) all points of K lie on only one side of a;

a necessarily intersects M, otherwise it would be a boundling-hyperplane

for MA. Lot M' be this intorsoction. It has at last 1 lower dimension

than A and by assumption there are points pe MI with manses m s such that

n
b w Z mOr Now we knowthat c utm+(l-t)b for somet, O< t< 1,

a n
Hance c a tm + Z mi(l-t)pi and t + Z mi(lot) u 1. Hence we have proved

ii inl

the assertion for dimension n0 and by induction the assertion holds for all
n21.

B. SYSTEXIS OF LINEAR INEQUALITIES (THE HAAR PAPIE.)

1. Homogneous Inequalities

Let Dk(ul. u,.... .. ) -,u.)+ aaz+...+ an ;,-oro rk raes over

some indexing set I and a. u, are real mnmbers. Let D(u1, u, ... ,u).

aut + ae +.. .au and view the DkIs and D as linear fuactionals on An.

Consider Pk * (ad&1" e' Oaks)P for all kc. as points in RUn and let

M a fPk: ke). We say that the system of lnequalties Dk A 0 is closed

it M is a closed set in R . In most of the theorems Haar includes closure

al M as a basic assumptio. However, we can see that he really meaft a

litle more than this, tht is, that the set M be "cm icauy closed" is the

sse that there exist positive constants (Ck: k s 1) such that the set

U a (pk/ck:k 4 I) is not only closed but bounded (compact). In this case we

call the system Dk Z 0 canonically closed. In addition we say that the
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inequality D > 0 is a consequence of the system Dk _ 0 If every solutign of

the system fulfills D _ 0.

Theorem 1: I D > 0 is a consequence of the canonically closed system

Dk > 0, then there exist non-negative numbers Xk with at most n of them

non-nero such that

Da M~ )kDk.kaI
Proof: Let D a nk/u where €k > 0 are such that nk/ck : k 4 1 is compact.

If the theorem is true for Dk then it in also true for Dk ; for in that case we

have

D ~ k * E fYkck) Dk so we can set Xk a ~ck.

Thuas we can assume that M • IPk:kuis compact. without loss of generality

we can assume that ther* is a vector In a 51 11... ,1i 8U) in R. such that

Dk(M> 0for alkuI!I. Otherwise we have () D: I x:x1C> + 0 fD- 1 (0).
Ice!

but the subspace on the right hand side has dimension < n- 1 so that we don't

need a variables.

1

Let Pk IceA.Aa .'"& I. ) for kel.
Dkc(U)

Thn Pk all le in th hyperplan w given by N I a 1 . since
il

2 { i ( I z idi ccI/Dk(.) . Consider now the equivalent system

D k /Dr 1* Aru + A k2auZ+. .. + Aknun > 0 where now the coefficient points

Pk lie on
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Lwr Theb et "Pk: k It is compact i n.

Prood: For every Pk (kl' ak2 ° akn) 4 M define "a (Pk) • Dk u)

Since k )> 0 for all kI, n > 0 on M. early io contiuous on M

and erefore assumes its absolute minimum and maximum on M , i.e. we

canwrit. 0 < M. 1f m on M. Now we observ, that ---- :x4M.

Immediately we can see that'A is bounded since M is. A is closed;

for let x  -- ) y as m -> ". Then I x *n, as an infinite sequence in

M , has a limit point x in M, and hence a subsequence x., -> x as i -- e.

Hence - -- since fi(x) .1 0. Since every subsequence of a

convergent sequence converges to that limit of the sequence, we conclude

S yo ise. y M. and M is closed.

To give this new system a geometric interpretation, let u1 aU + ;
U 2 U a + 'a" @ * *sun z Un + ;n be a solution of this system and let

,k(Ul Uze..Un) Dk(Ul + ;....Un + ;') / Dk(;)

£ %,1 (Ui+ ' 1 )11

ini -a E AMUi+lI for alkulID k(a) i-

The system U18 Uz ... , Ua is then a solution of the i t

*k(UlUZ ... Un) 0 (ke) .

Let us look for intersection points of the hyperplme

Uil+Uzx+...+ U n+l"O withthevectors Ot, where Oistheorigli.



I
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Either there is no intersection with the line 0- k at all in which case

Al+.+ AknUn 0 0, or the intersection point has the forr..

x=(PAl...,PAn) where p .1 graphically:wk(Ul,.. Un)- I'

Now 0 is not cut in its interior i and o y if p is not in the interval

0 C x c < which is equivalent (from the graph) to 9 0 0 . Hence our hyper-

plan. has no interior intersection with the segment -; If and only if
90 1'v UZ' ..') > 0.

These hyperplanes can be characterized in another way. We have seen

that thepoit of M i.e. {Pk:keI alllie i t hyperplaW E and that is

compact. In Caratheodoryls sense let I be the smallest convex set in

coftaining IQ. Comect all points of K with the origin 0 to get an

n-dimesional convex set X, . Ka[w,... .u): ( iif 0,
01_< 11 -

Lemma 2: The hyperplane Ul 1x + U nxn+ 1 a 0 does not have an interior

intersection with 01k for all k el, if and only it it does not separate K.



Proof: < : Assume the hyperplane does not separate K, i.e.,

Ulx 1+...+ Unxn+ 1 has the came sign on K; but since OK, we have

U Xi+,.,+Unxn+1>0 on K. Since Pk. K(keI), wehave

0<AkU l + . . . + A i U n
+ 1:= 01k(U , Un) (kel) ==>

the hyperplane has no interior intersection with any of the OPk

-> : Assume the hyperplane has no interior intersection with any

n

Ok(kvI), i.e., 9k(U,... ,un) a U AkUi + 1 > O. By the main theorem of

Caratheodory, if (ill." in) i IC, we can write Zi = E NAk, with .>O
ktl

and E Pk = 1 and at most n NOS being non-zero. Hence for each k we have

E pkA Ui + .k_ 0andtherefore 0< E(EIkA Ui+ E N E U +1.

n -n

Hence for any e, 0<<e<l we have 0< (exi)Ui+1= ExiUi+l ; hence

n

for any (x 1 ."'"Xn)4K .x i Ui + 1> 0, i.e., the hyperplane does not

separate K.

Thus far we have been building machinery for the proof of Theorem 1.

Lemma 3 Dk(U) > 0 for all => D(u) > 0

Proof: We have seen in the proof of lemma 1, that for f; defined on IM by

f; (Pk) =fu- (ak...a) = Dk(), 0 < m < f- < m. on M. It is not hard to

show that given t 0 , if ut is in some 6-neighborhood of ;, N 6(a), then

<tfor aM I i.Qooee so that for Of N6(4a),
fu( f Pk) I a' o, Pk' Chos .I

1 < fu'(P" fu (p < for all p A.

iIcnco for any uSt N6 (u) ,

mllm =f >O0nM

- < f'(Pk) < + m  -= >0 on •
2 2



~-22-

Suppose now D(a) w 0. Then since D is a linear functional on Rn not

identically zero, there exists a u*4 R. such that D(u*) = 1.

Set u'u- 6 U

Then uld N6(a) so that Dk(ul) > 0 for all k 1 . Hence since D is a consequence
6<

of the system Dk - 0' we have D(ul) > 0. But D(u ) = 0 -T <_- 0 which is a

contradiction. Hence D(i) > 0.
a, a n

Thus net A1  _,...,A = -. where D(;) = a u
D(u) DOA) i=l i

so that E Aii= a i = -----> the point P = (A 1,... An) lies in!.

/ ,

Lemma 4 Let (UI ,..., Un) be a hyperplane not separating K, then

U
(Ul""U n) = V(UlClp'"U n +;n ) / v ( a ) = E A ' U +1i > 0 .i=l
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Proof: For such a hyperplane know k(Ul,.• Un) > 0 (k 4 I) because by

lem o , this plans has no interior intersection wit , ife.,

ontrary that P O. KBut this means D (Un+ cKslo Us+ t her, for ll k hence

D l + n K .9 can) ass h anc o udin.,hyp e rpn > 0, hoh was to e-- D(O) proved.

Cotsequence: For such hyperplanos, o(U l pi Un)  h which mans by our

previous ceometric Interpretaton that the hyperplane has no interior inter-
section with O.

Lermr5: P = (A,#...A n) is in

Proof: We know that P 4 E. Thus it suffices to know P e K. Assume on the

contrary that P i K. Then since K is closed there exist interior points of

0O_ also not in X. We can passa a bounding-hyperplane, s , through one of

these since a convex not is the set of all points for which this can't be done.

But this contradicts the above consequence of lemma 4. Hence P e K and

therefore P K.

with at most n non-zero lk Hence
a n

e() a AiUI + IEZ POO +1E k(Z AiUi+ 1) aFOk(U)
1.1 k iml k iml kc

E POOk() k()D()

Hence D) aDIV+ ;)uLl k aE !0 )Dka

D(Z) D(Q) kc D(Qi) Dk(a)

a E Dk(u) = E LDk(u) and theorem Iis proved,

kk > 0 # and at most n of them are non-seto.
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2. Inhomoensous Inequalities

Theorem 1 above dealt with the homogeneous caae. For the inhomo-

5eneous case let

Dk(ulf.' ' ' U n) 0 M+"" + .. a un+ am+l

k i I with (u1,..., u) viewed as in En . Let M r.Pk (a ."' akn)::k I)

as before.

Theorem Z

If D(u,.e.Un) = alu+...+ anun+an,+ >0 ic a consequence of

the canonically closed system Dk_> 0 (k t I, then there exist Xk.> 0.(kl) with

at most n+1 non-zere such that

DNu... .) a u Dk u. u 2" +)u

(k)

Proof: WVe can assume existence of ( ;... 'n ) = such that Dk(a)> 0

otherwise 1D"1 (0) z fl (>l 0 and flJ'>0)wllbe trsat fa
k k k k - k~

(n-l)-dlnenaional subspace so we can reduce the number of variables.

Again, set Ok(Ul,...,UA ) = Dk(U l  at. . u n
+ a

n)/Dk(;,....an)

[ [ M. Ui ( + M Z 0 + ,k+ llDk(,...,

n aki n
Z - U+l 1 EAk/U+l, where A ki -a
iml DOlU) inl Dkll)

Let (A kdl * #Aks) a Pk

Then consider the hyperplane, h, given by Ull+... +U xn+ 1 0 Then

Just as in the homogeneous case we can prove the property:

A has no interior intersection with h - k(=l,. , U)>O.A)Ul 
lx



Let K be smallest convex set containing 0 and Pk This is the same

K as before, and since M is compact the set{0, Ph, kel) is again compact

inside K. As fore we see at >(....., 0 V . oI

#a a ) > 0, ad therefore

JDU a 41  a

D(6) imi D(u) 1 -i

Hence we have the following restatement of lemma 2:

a) D >0 is a consequence of Dk _ 0 < =a for any hyperplane (Ulf ... , Un)T

not separating K we have (Ui,....Un) )0

Lt P

K- /

Clain P 4 K. If not, let d a distance from P to K realised from some point

Q e K. since K is compact. Pass a hyperplan. a. through an interior point

of QP which does not separate K. say Uix3i+.+Unxn+ 1 z 0. Since 0K we know

U 1 Zl +.+ Unxn +_ 0 onthe whole half-space in dbich K lie. Since P is

mot tdis half-space. Z 1 < 0 for P. which is impossible by
181

property B). Hence P 4 K. By Cartheodoryls theorem there eist

%o# Ik 0 withat most a+l non zero (since the dimensionof K is a),

such that



lI

-26-

EN+Ro = I and Ai-=4 0 00+ - N AkI, fori=l,Z,...,n
k k i

and ksl k(l U kiI1  {Akti 1+1}

kc kti 1=

: LZ k kAJU i+ Ik E EAiU +l(ILo)S(U"'''U)" o

=l kE k i=2

Hence *0U1,...,U) U 2: Nk(Ul ,,Un) + L°  Since Dlu) and Dk(U) > 0
kil

we can make the necessary adjustments to the O's as before to get

D= E kDk+ Xo with k9O, ktI, and atmost n+l ofthe ksnon-zero.
kcI

3. Parameter Representation of Linear Inequalities

Since the convex set K is compact, K is bounded by a finite number

of hyperplanes, i. e., K is a polyhedron. The hyperplane E with equation

;IXl+ " "+ Ux =1 is one ofthese and we know thatfor all (x1,...,x n ) cK,

-"xl - zX-..- anXn+ > 0

Since all of the remaining hyperplanea go through the origin 0, they have equa-

tino 1 q)x1 + .+u(q)x = 0 (q=l, Z,..., N), where the coefficients

0 0% can be chosen so that for all points of K we have

Wxl...u~qx >0 (qil2...,N)

Hence the points (xl,... xn) of K can be characterized as those (and

only those) satisfying tho following N +1 inequalities

.-u.q + 00 + x +1>01 1 n n-
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Theorem 3:

U1 +a,' U2+ u ". Un Un is a solution of the inequality system

DkZO ,> U13x+...+ UnX+l0 is a consequence of the N+l inequalities(*).

Proof2 -o Dkn l + a.... Un+ an) OV k, henw hMve seen thata

(U..., U)-pl, do.. not separate LoK. i.e.. Ul+. .+U nxn+ 1> 0 i

(Xj#,... ) k i.e., . the system (*) holds for (xl,.. 0 #xn).

<: From this assumption it follows that the hyperplae (Ulf.... U)T

does not separate K in> it does not have an interior intersection with the

segments ON -> Dk(UI +  ua la .U+ a) > o.

Hence (l+ iis.., + ;n) sasfies Dk o fora l k, ifand onlyif

there exist non-negative numbers X(q) (q 1.2.... °N) ° , and ko with at

most n + 1 different from zero such that

qulN N No, +.+U l Z )6(q( (. +.....uq. ajxl- . is is x + xo

qul qwl a

This Is a consequence of the inhomogeneous case. J2.

Therefore every solution u1, u2 ... un of the systeo of inequalities

Dk _> 0 (We!) can be put in the following form

N N
I~ )u 1 A u 2 a E z 2*O

qul qul

N
un E ( q) +Xa where +)o0 .o 0i

qul % on
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This follows from observing that

N Xq) (q) andi Ut.
q=l

The converse of the statement is also true simply by reversing the steps

to put things in terms of U 1 , .. UN again and appealing to Theorem 3.

4. Integral Inequalities

Let al(x), a?(x),... ,a (x) and a(x) be continuous functions in the

interval a < x < (. Let u(x) range over aU1 continuous functions defined in

this interval. V/c say that the inequality

f at(x) u(x) dx> 0 is the consequence of the following inequalities

fa 1(x) u(x)dx>O, a2(x) u(x)dx> 0, . . . f a(x) u(x)dx > 0

if it is satisfied by all continuous u(x) which satisfy the above system. We

assume that the functions at(x), a2(x),..., a (x) are all linearly independent.

We then assert:

Theorem: In this case we can write a(x) in the following form:

a(x) E Xlal(x) + X2a2 (x) +... + X a,(x), where 'I'k fotfk

constants.

Proof: W'e can solve for )I k2# . . from the following system of linear
equations:

P (3
1a l (x) a(x)=dx= f a(x + fa,(x)a,(x)dx+..+ ) fa 1 (x)a (x)dx
a a a a1

PPP 2J a 2 (x) a(x) dx = k, f a 2(x)al(x)dx + X2 1a 2 (x) dx +.. k f a2 (x) aV(x) dx
a *a a a

P "P P ~2
f a() a(x) dx = k, f a,(x) al(x)dx + X2 f av,(x) a2 (x) dx +. + ky f a. (x) dx
a a a o
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The matrix of this system is positive definite, for let

P
A = (apq) ( f a P(x) aq (x) dx) be the linea-: transformation.

Then we have to show (Axjx) =0=> x=0. But

n n
(Axfx) =qM xxqa. Z X x ap(x)a(X) dx

p,q=l p q pjiq=l P q, P q

f xal(x) +x 2 a 2 (x) + ... + x, a1,(x) ]Z dx.
a

Hence (Axl).) = 0 implies xI a1(X) + x 2 a2 (x) + ... + xVaV(x) = 0 for x[a,]

=> xI = x. =... =x = 0 since a (x)'s are linearly independent.v p

But this means A is non-singular; for if Ax = 0. then from t(Ax,x)I< [lAxIf IxI(

we have that (Ax, x) =0 and hence x = 0.

Hence there exists a unique solution )XP 2 P.. "

Let w(x) M a(x) - Xlal(x) - ) 2 a2 (x) - ... - ).av(x) . Then

f al(x) w(x)dx = 0 , f a2 (x) v(x)dx = 0 , f a,(x)-.v(.-dx = 0
a a a

Similarly for -vr(x). Hence as a consequence we have

1o p
f a (x w(x) > 0 and - f a(x) v,(x) > 0

a at

=> f a(x) w(x) dx = 0. Now replace a(x) by w(x)+X lal(x) +... + Xa (x)

2
to get f vi(x) dx= 0 which implies w(x) - 0 , i.e.,

a

aN.) a,(x) + X. a, (x) +...+ k,,a, W
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We have to show now that ) i > 0 (i-l, 2,... v)

Consider the system of equations:

f a2 (x) al(x) dx = g2 a 2 (x) dx + 1 3 f a2 (x)a 3 (x)dx+"" + ± f a 2 (x)a,(x) dx
aa a at

$ a3 (x) a1 (x) dx - a3 (x) a,(x) dx + I 3 fa 3 (x) d:c+... + [ V fa 3(x) aV(x) dx
a CI a a

P P P 2a 2
f a (x) a(x) dx= 12 f a'(x) aZ(x)dx+1± 3 fa 3 (x) dx+...+jL fav(x) dx

a a a a

Since a 2 (x), a 3 (x),..., aV(x) are linearly independent we see that the matrix

of this system is non-singular. Hence there is a unique solution 'L2 ' '3" ". '

Let wv (x) = aI(x) - 1±2a 2 (x) - I±3 a 3 (x) - ... - l av(x)

so that we can write the above equalities in the form

P P P -.f a2 (x) ; (x) dx = 0, f a 3 (x) 7v(x) dx = 0. . al(x) w(x) dx = 0

Furthermore a1 (x) w (x) dx ;."(X) dx > 0 otherwise aI(x) would be
a a

a linear combination of the other ai(x)26

Hence ;(x) is a solution of our integral inequalities and as a consequence

p
we have f a(x) ;4x)dx > 0 . But

aP P Px] ()d - 2 xZ ,
J a(x) w(x)dx = £ [hia l (x) + ).,a,(x) +. .+ Xva v(x) (x) dx = 1 v(x) dx> 0.

Hence X, > 0. Similarly we argue for X2,... , v by removing the appropriate

al(x) from (a,(x), a 2 (x), ... , av(x)), and considering the smaller system of

linear equalities. Hence the assertion is proved.
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